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ZN-Graded Noncommutative Differential Calculus
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We consider the algebra MN(C ) of N 3 N matrices as a cyclic quantum plane.
We also analyze the coaction of the quantum group ^ and the action of its dual
quantum algebra * on it. Then we study the decomposition of MN(C ) in terms
of the quantum algebra representations. Finally, we develop the differential algebra
of the cyclic group ZN with d N 5 0, where ZN is viewed as the the subalgebra
of diagonal N 3 N complex matrices, and treat the particular case N 5 3.

1. INTRODUCTION

In the last decade, the concept of noncommutative differential geometry
[1] has been extensively developed. The simplest example of noncommutative
differential geometry based on derivations is given by the Grassmannian of
the matrix algebra }N 5 MN(C ) [2]. The matrix algebra }N can also be
considered as a cyclic quantum plane (qN 5 1) on which a coaction of
quantum group ^ and an action of its dual * are naturaly defined, and the
associated Wess–Zumino differential complex is constructed (see ref. 3 and
references therein). Moreover, the notion of a graded q-differential algebra
with the condition d N 5 0 has been recently introduced [4].

The main aim of this work is to study the noncommutative differential
geometry of the cyclic group ZN viewed as the subalgebra }diag

N of diagonal
matrices of }N , as an example of ZN-graded noncommutative differential
calculus.

This work is organized as follows: In Section 2 we present the space
MN(C ) as a cyclic Manin plane. Then we present the coaction and the action
of the quantum group ^ and its dual * on }N , respectively, and study the
reduction of }N under the representation of *. In Section 3 we construct

1 International Centre for Theoretical Physics, Trieste 34100, Italy.
2 Permanent address: Institut de Physique, Université d’Oran Es-sénia, 31100, Oran, Algeria.
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the noncommutative differential complex of the cyclic group ZN with a ZN-
graded differential d, i.e., dN 5 0, and treat in detail the particular case N 5 3.

2. THE CYCLIC MANIN PLANE

2.1. }N [ MN(C) as a Cyclic Quantum Plane

The algebra of N 3 N matrices can be generated by two elements x and
y obeying the relations [5]

xy 5 qyx (1)

x N 5 y N 5 1 (2)

where q denotes a primitive Nth root of unity:

qn 5 1, o
N21

n
qn 5 0 (3)

and 1 is the N 3 N unit matrix.
Explicitly, x and y can be represented by the matrices

x 5 1
0 1 ? ? ??? ? ?
0 0 1 ? ??? ? ?
? ? 0 1 ??? ? ?
? ? ? ? ??? ? ?
? ? ? ? ??? ? ?
0 ? ? ? ??? 0 1
1 0 ? ? ??? ? 0

2 ,

y 5 1
1 ? ? ? ? ? ?
? q ? ? ? ? ?
? ? q2 ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? ?
? ? ? ? ? ? q N21

2
We call the algebra generated by elements x and y satisfying the relations
(1) and (2) the cyclic quantum plane }N [ MN(C ). As an N 2-dimensional
vector space, }N is spanned by the following basis:
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{ars 5 xr ys; r, s 5 0, 1, 2, . . . , N 2 1}

and is endowed by the following internal law:

ars.amn 5 f (rs)(mn)
(kl)akl

where xrys 5 qsrysxr and

f (rs)(mn)
(kl) 5 q2ms dr1m

k ds1n
l

The noncommutativity of the elements of }N is reflected in the follow-
ing relation:

ars.amn 5 q(rn2ms)amnars

We can also equip }N with a Lie structure by introducing the following
commutation rule:

[ars, amn] 5 C (rs)(mn)
(kl) akl

where the structure constants are given by

C (rs)(mn)
(kl) 5 (q2ms 2 q2nr) dr1m

k ds1n
l

Let us define a basis {ers} of Der(}N), i.e., the Lie algebra of derivations
(all are inner) of }N as follows:

ers 5 Adars 5 [ars, .]

such that

ers(amn) 5 [ars, amn] 5 C (rs)(mn)
(kl) akl

and satisfying

[ers, emn] 5 C(rs)(mn)
(kl) ekl

2.2. The Quantum Group ^ and Its Coaction on }N

Let us construct the matrix quantum group generated by the quantum
matrix (a

c
b
d) coacting on the coordinate doublet of the reduced quantum plane

by the following left and right coactions:

1x8
y82 5 dL 1x

y2 5 1a b
c d2 ^ 1x

y2 5 1a ^ x 1 b ^ y
c ^ x 1 d ^ y2

(x9 y9) 5 dR (x y) 5 (x y) ^ 1a b
c d2

5 (x ^ a 1 y ^ c x ^ b 1 y ^ d )
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Imposing that the quantities x8, y8 (and x9, y9) should satisfy the same relations
as x and y, one obtains the following defining relations of the quantum
bialgebra Mq(2; C ):

ab 5 qba

ac 5 qca

ad 2 da 5 (q 2 q21)bc

bc 5 cb

bd 5 qdb

cd 5 qdc

together with

aN 5 d N 5 1, cN 5 bN 5 0

These latter generate an ideal I. The element $ 5 ad 2 qbc 5 da 2 q21bc
is central and represents the q-determinant, and if we set it equal to 1, we
get the quotiented Fun(SLq(2))/I [ ^.

Furthermore, the following commutative diagram of algebras and algebra
homomorphisms was introduced in ref. 6:

!(C2) →r
!(C2) ^ !(SL(2; C ))

fr↓ fr^Fr↓
!(C2) →

rq
!(C 2

q) ^ !(SLq(2; C ))

pM↓ pM^pF↓
M3(C )→

rF
M3(C ) ^ !(F )

where !(.) means the algebra of polynomial functions.
At this level, it is important to point out that in order to be a Hopf

algebra, ^ must be defined for q an odd primitive root of unity.
Using the fact that aN 5 1 and that

ad 5 1 1 qbc

we obtain d 5 aN21(1 1 qbc), so that d (or a) can be eliminated.
The algebra ^ can therefore be linearly generated, as a vector space,

by the elements aa bb cg, where a, b, g 5 0, 1, 2, . . . , N 2 1. We see that
^ is an associative algebra, of dimension N 3 [7].
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2.3. The Quantum Algebra * and Its Action on }N

Using the interchange of multiplication and comultiplication by duality,
we define the dual * of ^ as a quantum group of the same dimension as
^, generated by Ha Xb

1 Xg
2, where a, b, g 5 0, 1, 2, . . . , N 2 1 and X+,

X2, H are defined by duality by means of the following pairings between
generators:

^H, a& 5 q, ^H, b& 5 0, ^H, c& 5 0, ^H, d& 5 q2

^H21, a& 5 q2, ^H21, b& 5 0, ^H21, c& 5 0, ^H21, d& 5 q

^X+, a& 5 0, ^X+, b& 5 1, ^X+, c& 5 0, ^X+, d& 5 0

^X2, a& 5 0, ^X2, b& 5 0, ^X2, c& 5 1, ^X2, d& 5 0

and the relation

H N 5 1

X N
1 5 X N

2 5 0

Furthermore, the duality operation is a delicate issue for infinite-dimensional
spaces since the convergence is not well defined for the algebra * (see ref.
8, where the case N 5 3 is given explicitly). * acts on the cyclic quantum
plane }N since its dual ^ coacts on it. There are again two possibilities, left
or right, but we shall use the left action, which is generally defined as follows.
If we denote the right coaction of ^ on }N as

dR (z) 5 o
i

zi ^ ui

then

XL(z) 5 (Id ^ ^XL , .&) + dR(z)

5 (Id ^ ^XL , .&)((i zi ^ ui)

5 (i^XL , ui&zi

for z, zi P }N, XL P *, ui P ^.
It follows that the action of * on }N is given by the following table:

Left H X+ X2

1 1 0 0
x qx 0 y
y q2y x 0

For an arbitrary element of }N, one find the following expressions:
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H L[xr ys] 5 q(r2s) xr ys

X L
1[xr ys] 5 qr11 2 q22s

1 2 q222 xr11 ys21

X L
2[xr ys] 5 qs11 2 q22r

1 2 q222 xr21 ys11

with r, s 5 0, 1, 2, . . . , N 2 1.

2.4. Reduction of the Algebra }N into Indecomposable
Representation of *

The generator H always acts as an automorphism; for this reason, in
order to study the invariant subspaces of }N under the left action of *, we
have only to consider the action of X+ and X2. Neglecting numerical factors,
the action of X+ and X2 on a given element of }N can be written as follows:

xr11ys21 s xrys s xr21ys11

where X2 takes us from the left to the right and X+ from the right to the left.
We verify that under the left action of * the algebra of N 3 N matrices can

be decomposed into a direct sum of N subspaces of dimension N according to

NN 5 {x N21, x N22y, x N23y2, x N24y3, . . . , xy N22, y N21}

NN21 5 {x N22, x N23y, x N24y2, . . . , xy N23, y N22, x N21y N21}

NN22 5 {x N23, x N24y, x N25y2, . . . , xy N24, y N23, x N21y N22, x N22, y N21}

NN23 5 {x N24, x N25y, x N26y2, . . . , xy N25, y N24, x N21y N23,

xN22y N22, x N23y N21}

NN24 5 {x N25, x N26y, x N27y2, . . . , xy N26, y N25, x N21y N24,

xN22y N23, x N23y N22, x N24y N21}

???

N2 5 {x, y, x N21y2, x N22y3, . . . , x3y N22, x2y N21}

N1 5 {1, x N21y, x N22y2, x N23y3, . . . , x2y
N22

, xy N21}

such that
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}N 5 NN % NN21 % ??? % N2 % N1

3. THE ZN-GRADED DIFFERENTIAL GEOMETRY OF ZN

3.1. General Case

First, let us recall that it is possible to construct a Z2-graded noncommuta-
tive differential geometry of }N based on derivations by introducing a set
of 1-forms ukl defined by the following duality relation [2]:

ukl(emn) 5 dkl
mn 5 dk

m dl
n

Then, using the Z2-graded differential d (and the wedge product), one easily
describe the Z2-graded noncommutative differential complex (VDer(}N); d ).

Our main aim in this work is precisely to show that }N itself, equipped
with some well-defined differential d satisfying d N 5 0, can be viewed as a
ZN-graded differential complex of the cyclic group ZN.

For this purpose, let us define a ZN-grading on }N such that

.ars. 5 grading (ars) 5 r 1 s mod(N )

This means that a ZN-grading equal to 1 is attributed to the fundamental
objects x and y, and then the above decomposition of }N is naturally equipped
with the following ZN-grading:

N1 → 0

N2 → 1

N3 → 2

???

NN22 → N 2 3

NN21 → N 2 2

NN → N 2 1

Consider the cyclic group of order N, ZN 5 {1, y, y2, y3, . . . , y N21}. Therefore,
the algebra C`(ZN) of complex functions on ZN can be realized as the algebra
}diag

N , }N of diagonal complex N 3 N matrices.
Starting from C `(ZN) [ V0 (ZN) 5 ZN , we can build the space of 1-

forms V1(ZN) by introducing a differential dx: V0 → V1 associated to x and
defined by

dx( ym) 5 [x, ym] 5 (1 2 q2m)xym

This means that the subspace V1 5 xV0 5 {x, xy, . . . , xy N21} constitutes
the space of 1-forms.
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This differential can be naturally extended to all other subspaces of }N

such that

dx: Vk → Vk11

dx(ars) 5 xars 2 qrarsx 5 [x, ars]q 5 (1 2 qr2s)a(r11),s (4)

where the subspace of k-forms is defined by

Vk 5 x kV0 5 {x k, xky, . . . , x ky N21}

for k 5 0, 1, . . . , N 2 1. It is easy to see that the degree of the differential
forms is given by

degree(ars) 5 r mod(N )

and that the wedge product between two arbitrary forms is nothing else than
the usual matrix multiplication.

Then the ZN-graded differential complex (V(ZN), d ) with d N 5 0 is
completely built with

V(ZN) 5 V0 % V1 % V2 % ??? % VN22 % VN21 ' MN (C )

Moreover, one can easily verify that the differential d satisfies a q-deformed
Leibniz rule:

dx(arsamn) 5 (dx(ars))amn 1 qrars(dx(amn))

and that effectively one has d N 5 0:

d N
x (vp) 5 [x, [x, [x, . . . , [x, vp]q]q ??? ]q (N times)

5 [x, [x, [x, (xvp 2 qpvpx)]q ???]q

5 q p(1 1 q 1 q2 1 ??? 1 q N21)(???) 1 (x Nvp 2 vpx N)

5 0

3.2. N 5 3

Let us now consider the case of Z3 5 {1, y, y2}, with

1 5 1
1 0 0
0 1 0
0 0 12 5 y3, y 5 1

1 0 0
0 q 0
0 0 q22, y2 5 1

1 0 0
0 q2 0
0 0 q2

with q 5 e2ip/3.
The algebra C `(Z3) of complex functions on Z3 is then identified with

the subalgebra }diag
3 , }3 of diagonal complex 3 3 3 matrices, where }3

is generated by;
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{1, x, y, xy, x2, y2, x2y, xy2, x2y2}

with

x 5 1
0 1 0
0 0 1
1 0 02

If we attribute a Z3-grading 1 to x and y, then we have

{1, xy2, x2y} → 0

{x, y, x2y2} → 1

{x2, y2, xy} → 2

From the subspace V0 5 Z3 of 0-forms, we build the two other subspaces
of 1- and 2-forms, respectively,

V1 5 xV0 5 {x, xy, xy2}

V2 5 x2V0 5 {x2, x2y, x2y2}

by using the differential dx: Vk ← Vk11 defined by (4), i.e.,

dx(1) 5 0

dx( y) 5 (1 2 q2)xy

dx( y2) 5 (1 2 q)xy2

dx(x) 5 (1 2 q)x2

dx(xy) 5 0 (5)

dx(xy2) 5 (1 2 q2)x2y2

dx(x2) 5 (1 2 q2)1

dx(x2y) 5 (1 2 q)y

dx(x2y2) 5 0

Then, the Z3-graded differential algebra V(Z3) is given by

V(Z3) 5 V0 % V1 % V2 ' M3(C )

with

Vk 5 xkZ3, k 5 0, 1, 2

Finally, using the relations (5), we can easily verify that for arbitrary vp P
Vp(ZN) and vq P Vq(ZN) we have
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dx(vpvq) 5 (dxvp)vq 1 qpvp(dxvq)

and

d 3
x(vp) 5 [x, [x, [x, v]q]q]q

5 [x, [x, (xv 2 qpvx)]q]q

5 ???

5 q p(1 1 q 1 q2)x[x, vpx]q 1 (x3v 2 vx3)

5 0

4. CONCLUSION

Noncommutative differential geometry has become a very important
research topic in mathematical physics. In this context, the role of the C*-
algebra of continuous complex functions on an ordinary manifold is played
by an abstract associative, not necessarily commutative C*-algebra as analog
of functions on noncommutative manifolds. In order to define gauge theories
on these noncommutative spaces, we need to define noncommutative differen-
tial calculus on them. In fact, several particle physics models have been
constructed on noncommutative spaces, for instance, on product spaces like
C`(M ) ^ MN(C ), M4 3 ZN , etc. [2, 9] where M4 is Minkowski space.

The matrix algebra }N is very often used in various fields of physics,
and it was shown that its differential geometry is the simplest example of
noncommutative differential geometry. In ref. 3 the Wess–Zumino complex
of }N was constructed. Following the Dubois-Violette approach [2], we
developed the noncommutative universal differential algebra of these matrix
algebras and presented its decomposition into irreducible components by
determining the eigenvalue equations of the associated Laplace–Beltrami
operator, with a special interest in the case of M3(C ) [10].

It would be very interesting to study the ZN-graded differential geometry
of some noncommutative spaces. We plan to treat this subject in a future
paper in order to describe gauge theories on such spaces.
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